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SUMMARY 

Physical phenomena which can be described by the Rayleigh density function exist in many 
areas of study; e.g., noise theory, lethality, radar return, etc. This report gives some of the basic 
properties of the Rayleigh prcbability density function. It includes the functional relationships be- 
tween the various parameters and graphical displays of these relationships. The density functions 
for the sum and the product of two Ravleigh distributed random variables and the relationships be- 
tween their various parameters are described. Illustrations of the use of the density functions are 
given. Also included are complete tables of the Rayleigh density function and distribution func- 
tion. 
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INTRODUCTION 

In nature, physical phenomena in many areas of fields of science (for example, noise theory, 
lethality, radar return, etc.) have amplitude distributions which can be characterized by the Rav- 
leigh density function or some function which can be derived from the Rayleigh density function. 
Because a literature search failed to turn up any major source of material on the Rayleigh density 
function, this report was written to fill the need of those persons working with this density func- 
tion to serve as a quick reference which would describe this density function and some of its 
properties.   The density functions for the sum and product of two Rayleigh distributed random 
variables  and the relationships between their various parameters are described. 

The main text is devoted to the properties of the Rayleigh density function and examples of 
applications.   Derivations of the functional relationships are given in the appendix. 

ONE RAYLEIGH DISTRIBUTED RANDOM VARIABLE 

Definition of Rayliigh Densify Function 

A random variable X is said to have a Rayleigh density function PR(x) if the probability den- 
sity function is of the form 

PR(x) - f 
if x     0 

(1) 

JL e    2a       if x N 0 
2 ~ 

where n is a convenient parameter.   PR(x) is illustrated in figure 1 and tabulated in table 1. 

Rayleigh Distribution Function* 

The Rayleigh distribution function PR(x) is given by 

l-O ifx<0 

PR(x) - < (2) 

1 -e if x >0 

This function is ilh strated in figure 2 in units of a and tabulated in table 2. 

Elucidation of fhe Rayleigh Parameter (a) 

As mentioned above, a is merely a convenient parameter and not the standard deviation for a 
Rayleigh distributed random variable.   It is simply the normalizing factor which is universally 
used for this function.   Its utility will be made evident in the following paragraphs. 

* Curn-nt tertmnoloKV will be followed with respect to the names density function, and distribution function. 
Sd.i«' authors call the foitner the probability distribution function, and the latter the cumulative distribution 
function. 
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Figure 1. The Rayleigh Density Function. 
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Table   1.    The Royleigh Density Function P-(AUI) 

M 0.00 0.01 0.02 0.03 0.04 0.05 0.0« 0.07 1 0.08 0.09 | 

0.0 0.00000 0.01000 0.02000 0.02999 0.03997 0.04994 0.05989 0.06983 0.07974 0.08964 

0.1 0.09950 0.10934 0.11914 0.12891 0.13863 0.14832 0.15797 0.16756 0.17711 0.18660 

0.2 0.19604 0.20542 0.21474 C 22400 0.23319 0.24231 0.25136 0.26034 0.26924 0.27806 
0.3 0.28680 0.29546 0.30403 0.31251 0.32091 0.32921 0.33741 0.34552 C 35353 0.36144 
0.4 0.36925 0.37695 0.38154 0.39203 0.39940 0.40667 0.41382 0.42085 0.42777 0.43457 
0.5 0.44125 0.44781 0.45424 0.46055 0.46674 0.47280 0.47873 0.48453 0.49021 0.49575 
0.6 0.50116 0.50644 0.51159 0.51660 0.52148 0.52622 0.53083 0.53bVJ 0.53963 0.54383 
0.7 0.54789 0.55182 0.55560 0.55925 0.56276 0.56613 0.56936 0.57246 0.57542 0.57824 

0.8 0.58092 0.58346 0.58587 0.58815 0.59028 0.59228 0.59415 0.59588 0.59748 0.59895 

0.9 0.60028 0.60148 0.60255 0.60349 0.60431 0.60499 0.60555 0.60598 0.60629 0.60647 
1.0 0.60653 0.60647 0.60629 0.60599 0.60557 0.60504 0.60439 0.60363 0.60276 0.60177 
1.1 0.60068 0.59948 0.59818 0.59676 0.59525 0.59364 0.59192 0.50011 0.58820 0.58620 

1.2 0.58410 0.58192 0.57964 0.57728 0.57483 0.57229 0.56968 0.56698 0.56420 0.56135 
1.3 0.55842 0.55542 0.55235 0.54921 0.54600 0.54273 0.53939 0.53599 0.53253 0.52901 
1.4 0.52544 0.52181 0.51812 0.51439 0.51061 0.50678 0.50290 0.49898 0.49502 0.49102 
1.5 0.48698 0.48290 0.47879 0.47465 0.47047 0.46627 0.46204 0.45778 0.45349 0.44919 
1.6 0.44486 0.14051 0.43615 0.43177 0.42737 0.42296 0.41854 0.41411 0.40967 0.40522 

1.7 0.40077 0.39631 0.39185 0.38739 0.38293 0.37846 0.37400 0.36955 0.36510 0.36065 

1.8 0.35622 0.35179 0.34737 0.34296 0.33857 0.33418 0.32981 0.32546 0.32112 0.31680 
1.9 0.31250 0.30822 0.30396 0.29971 0.29549 0.29129 0.28712 0.28297 0.27884 0.27474 

2.0 0.27067 0.26662 0.26261 0.25862 0.25465 0.25072 0.24682 0.24295 0.23911 0.23530 
2.1 0.23153 0.22778 0.22407 0.22040 0.21675 0.21315 0.20957 0.20603 0.20253 0.19906 

2.2 0.19563 0.19223 0.18887 0.18555 0.18226 0.17901 0.17580 0.17262 0.16948 0.16638 
2.3 0.1633 0.16028 0.15729 0.15434 0.15143 0.14855 0.14571 0.1429 0.14014 0.13741 
2.4 0.13472 0.13207 0.12945 0.12687 0.12433 0.12183 0.11936 0.11692 0.11453 0.11217 
2.5 0.10984 0.10755 0.10530 0.10308 0.10090 0.09875 0.09664 0.09456 0.09251 0.09050 
2.6 0.08852 0.086.S8 0.08467 0.08279 0.08094 0.07913 0.07735 0.07559 0.07387 0.07219 
2.7 0.07053 0.06890 0.06730 0.06573 0.06419 0.06268 0.06120 0.05975 0.05832 0.05693 
2.8 0.05556 0.05421 0.05289 0.05160 0.05034 0.04910 0.04788 0.04669 0.04553 0.04439 

2.9 0.04327 0.04218 0.04111 0.04006 0.03Q03 0.03803 0.03705 0.03608 0.03514 0.03423 

3.0 0.0333J 0.03245 0.03159 0.03075 0.02993 0.02913 0.02834 0.02758 0.02683 0.02610 

3.1 0.02538 0.02469 0.02401 0.02334 0.02270 0.02206 0.02145 0.02084 0.02026 0.01968 

3.2 0.01912 0.01858 0.01805 0.01753 0.01702 0.01653 0.01605 0.01558 0.01513 0.01468 
3.3 0.01425 0.01383 0.01342 0.01302 0.01263 0.01255 0.01188 0.01152 001117 0.01083 

3.4 0.01050 0.01018 0.00987 0.0( 956 0.00927 0.00898 0.00870 0.00843 0.00816 0.00791 
3.5 0.00766 0.00741 0.00718 0.00695 0 00673 0.00651 0.00630 0.00610 0.00590 0.00571 
3.6 0.005:2 0.00534 0.00517 0.00500 0.00483 0.00467 0.00452 0.00436 0.00422 0.00408 
3.7 0.00394 0.00381 0.00368 0.00355 0.00343 0.00331 0.00320 0.00309 0.00298 0.00288 

3.8 0.00278 0.00268 0.00259 0.00250 0.00241 0.00233 0.00224 0.00217 0.00209 0.00201 

3.9 0.00194 0.00187 0.00181 0.00174 0.00168 0.00162 0.00156 0.00150 0.00145 0.00139 
4.0 0.00134 0.00129 0.00124 0.00120 0.00115 0.00111 0.00107 0.00103 0.00099 0.00095 
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Toble 2.   The RoyUigh Distribution Function PR(^ 

M j 0.00 j 0.01 0.02 0.03 1  0-04 i 0.0 s 0.06 | 0.07 0.0» \    0.09 

0.0 o.oocoo o.oooos 0.00020 0.00045 0.00080 0.00125 0.00180 0.00245 0.00319 0.00404 
0.1 0.00499 0.00603 0.00717 0.00841 0.00975 0.01119 0.01272 0.01435 0.01607 0.01789 
0.2 0.01980 0.02181 0.02391 0.02610 0.02839 0.03077 0.03324 0.03579 0.03844 0.04118 
0.3 0.04400 0.04691 0.04991 0.05299 0.05616 0.05941 0.06275 0.06616 0.06966 0.07323 
0.4 0.07688 0.08061 0.08442 0.08831 0.09226 0.09629 0.10040 0.10457 0.10881 0.11312 
O.S 0.11750 0 12195 0.12646 0.13103 0.13567 0.14037 0.14512 0.14994 0.15482 0.15975 
0.6 0.16473 0.16977 0.17486 0.18000 0.18519 0.19043 0.19571 0.20104 0.20642 0.21184 
0.7 0.21730 0.22279 0.22833 0.23331 0.23952 0.24516 0.2S084 0.25655 0.26229 0.26806 
0.* 0.27385 0.27967 0.28552 0.29139 0.29728 0.30320 0.30913 0.31508 0.32104 0.32703 

0.9 0.33302 0.33903 0.34505 0.35108 0.35712 0.36317 0.36922 0.37528 0.38134 0.38740 
1 0 0.39347 0.39953 0.40560 0.41166 0.41772 0.42377 0.42982 0.43586 0.44189 0.44791 
1 1 0.45393 0.45993 0.46591 0.47189 0.47785 0.48379 0.48972 0.49563 0.50152 0.S0740 
1 2 0.51325 0.51908 0.52489 0.53067 0.53643 0.54217 0.54788 0.55356 0.55922 0.56484 
1 3 0.57044 0.57601 0.S8155 0 38706 0.59253 0.59798 0.60339 0.60877 0.61411 0.61942 
1 4 0.62469 0.62993 0.63512 0.64029 0.64541 0.65050 0.65555 0.66056 0.66553 0.67046 

1 5 0.67535 0.68020 0.68501 0.68977 0.69450 0.69918 0.70382 0.70842 0.71298 0.71749 

1 6 0.72196 0.72639 0.73077 0.73511 0.73941 0.74366 0.74787 0.75203 0.75615 0.76022 
1 7 0.76425 0.76824 0.77218 0.77608 0.77993 0.78373 0.78750 0.79121 0.79489 0.79852 

1 8 0.80210 0.80564 0.80914 0.81259 0.81600 .81936 0.82268 0.82S96 0.82919 0.83238 
1 9 0.83553 0.83863 0.84169 0.84471 0.84768 0.85062 0.85351 0.85636 0.85917 0.86194 
2 0 0.86466 0.86735 0.87000 0.87260 0.87517 0.87770 0.88018 0.88'>63 0.88504 0.88742 
2 1 0.88975 0.89205 0.89431 0.89653 0.89871 0.90086 0.90298 0.90505 0.90710 0.90910 
2 2 0.91108 0.91302 0.91492 0.91680 0.91863 0.92044 0.92221 0.92396 0.V2567 0.92735 
2 3 0.92899 0.93061 0.93220 0.93376 0.93529 0.93679 0.93826 0.93970 0.94112 0.942=0 
24 0.94387 0.94520 0.94651 0.94779 0.94904 0.95028 0.95148 0.95266 0.95382 0.95495 
2 5 0.95606 0.95715 0.95821 0 95926 0.96028 0.96127 0.96225 0.96321 0.96414 0.96506 
26 0.96595 0.96683 0.96768 0.96852 0.96934 0.97014 0.97092 0.97169 0.97243 0.97317 
2 7 0.97388 0.97458 0.97526 0.97592 0.97657 0.97721 0.97783 0.97843 0 97902 0.97960 
2 8 0.98016 0.98071 0.981?4 0.98177 0.98228 0.98277 0.98326 0.98375 0.98419 0.98464 
29 0.98508 0.98551 0.98592 0.98633 0.98672 0.98711 0.98748 0.98785 0.98821 0.98855 
3 0 0.98889 0.98922 0.98954 0.98985 0.99016 0.99045 0.99074 0.99102 0.99129 0.99155 
3 1 0.99181 0.99206 0.99231 0.99254 0.99277 0.99300 0.99321 0.99342 0.99363 0.99383 

32 0 99402 0.99421 0.99440 0.99457 0.99475 0.9O491 0.99508 0.99523 0.99539 0.99554 

33 0.99568 0.99582 0.99596 0.99609 0.99622 0.99634 0.99646 0.99658 0.99669 0.99680 

34 0.99691 0.99701 0.99711 0.99721 0.99731 0.99/40 0.99749 0.99757 0.99765 0.99773 

35 0.99781 0.99789 0.99796 0.99803 0.99810 0.99817 0.99823 0.99829 0.9983S 0.99841 
36 0.99847 0.99852 0.99857 0.99862 0.99867 0.99872 0.99877 0.99881 0.99885 0 99890 
3 7 0.99894 0.99897 0.99901 0.99905 0.99908 0.99912 0.99915 0.99918 0.99921 0.99924 
38 0.99927 0.9S930 0.99932 0.99935 0.99937 0.99940 | 0.99942 0.99944 0.99946 0.99948 
39 0.99950 0.99952 0.99954 0.99956 0.99957 0.99959 0.99961 0.99962 0.99964 0.09965 
40 0.99966 0.99968 0.99969 0.99970 0.99971 0.99973 0.99974 0.99975 0.99976 0.99977 

• 
• 



Moxfmvm Vo/w« of Rayltlft» Density Function 

The maximum value of the Rayleigh density function which will occur when x * a in equation 
(Dii 

max    |pR(x)| - pR(a) - i e    2 - 1(0.60653) (3) 
Ov  K<W 

Mean of Rayloigh Probability Dontity Function 

The mean of a random variable which has a Rayleigh density function is given by 

This relationship is illustrated in figure 3. 

(4) 

14 

12 

10 

10 

Figur» 3.   Th« Ralatiomhip B*tw««n a, th« Standard! Paramatar af th« RayUigh Dantity 
Function, and th« Mean of th« RayUigh Dontity Function, 



Mean Square ol Raylei9h Probability Density Function 

The mear. square of a random variable X which has a Rayleigh density function is given by 

(5) 

Standard Deviation ol Raylei9h Probability Density Function 

The standard deviation of & random variable which has a Rayleigh density function is given by 

aR = aR "' 0.65514a 

This relationship is illustrated in figure 4. 
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Figure 4. The Relationship Between o, the Standard Parameter of the Rayleigh Density 
Function, and the Standard Dev iation of the Rayleigh Density Function. 
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RELATIONSHIP BETWEEN THE RAYLFIGH DENSITY AND SOME WELL KNOWN 
PROBABILITY DENSITIES 

If X and Y are independent random variables which have normal density functions with respec- 
tive means /i«, /iY and respective standard deviations a-, a^ such that o» ■ ffy and if 

V^fM 
then R is Rayleigh distributed with parameter ■ • 1.   The random variable R is also said to have a 
circular normal density. 

If a random variable X has a chi squared density function with two degrees of freedom, then 
\ X has a Rayleigh density function. 

JOINT PROBABILITY DENSITY FUNCTION OF TWO INDEPENDENT RAYLEIGH 
DISTRIBUTED RANDOM VARIABLES 

The joint probability density function of two independent Rayleigh distributed random varia- 
bles X. and X , with respective parameters a^ and a, is given by 

if Xj - 0 or x2 < 0 

X^X (Xj,x2) 

xlx2 
2   2 

exp [-04)1 L    \2«1 2n2/. 

if Xj _; 0 and Xj > 0 

(7) 

This function is illustrated in figure S. 
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Fi11ure 5. The Jo int Probob il ity Dens ity Funct ion of Two lndepenJent 
Royleigh Ois t ri but :!d Rondom Vor iobles. 
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SUM OF TWO RAYLEIGH DISTRIBUTED RANDOM VARIABLES 

Density Function for Sum of Two Independent Rayleigh Distributed Random Variables 

If Xj and XT ure two independent random variables with Rayleigh density functions and re- 
spective parameters (i| and o-,, then the density function of the random variable Y - X. f X, is 
given by 

PY(y)-0     if y     0 

and if y _• 0 it is given by 

Pv(y' 
..;V 

2'12 (•{ » «P 
exp 

\    2«,/      (n, + a2) \    2a2/ 

y? 
«^"jly" («I + o2)l 

CJ 2N2 

exp 

♦ «JP 
L    2(a* f a^J 

(8) 

erf 
y«2 

f»,V2('*j I "2^ 

erf 
y«i 

a2y/2(a],a
2

2)\ 

where 

nf^O- -4r Je '   dt 

- 

is the error function.   The error function is extensively tabulated and very good numerical approxi- 
mations exist.*   Equation (8) is shown in figuio 6 in terms of the standard deviation of Y.**   The 
distribution function for the above density function is shown in figure 7. 

Meon and Standard Deviation of Sum of Two Rayleigh Distributed Random Variables 

If Y is the random variable as in the density function of equation (8) above, then the mean of 
Y is given by 

fly =■/—(„,   |  n2) (9) 

The standard deviation of Y is given by 

"Y "   \/{2 " =f)(al ' «?)     0.65514 x/rrj I o (10) 

* S^e Nutmnal Hureau of Standards Applied Mathematics Series 5S, Handbook of Mathematual Functions, 
chapter 7. 
Note that in figure f>. a vanahle which is the sum of two Rayleigh variables could easily be mistaken for 
a normally distributed random variable. The only difference is the apparent skewness of the curve. Also 
note that a variable which is the product of two Rayleigh variables could easily be mistaken for a single 
Rayleigh distributed random      "iable (see figure  1). 
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PRODUCT OF TWO RAYLEIGH DISTRIBUTED RANDOM VARIABLES 

Density Function for Product of Two Independent Rayleigh Distributed Random Variables 

If Y ■> XjX^ where X, and X2 are independent random variables with Rayleigh density func- 
tions with respective parameters a, and a2, then the density function 01 Y is given by 

if y < 0 

Pv^y) (ID 

Mim 
2  2 

[la2 

exp 
L    2^y2 J 

dx     if y ^ 0 

This function is numerically integrated and then illustrated in figure 8.   The distribution function 
for the above density function is illustrated in figure 9. 
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Figure 8.   The Density Function (or the Product ol Two Independent 
Rayleigh Distributed Random Variables With Equal Parameters. 
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Mean and Standard Deviation ol Product ol Two Rayleigh Distributed Random Variables 

If Y is the random vari able whose density func tion is shown in equation (1 1). the n the mean of 

Y is given by 

(12) 

The s tandard deviation of Y is given by 

(13) 

EXAMPLES 

Exa mple l. The use of table 1: 
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f 
Suppose it is wished to know the ordinate of the Rayleigh density function at 2.14«.   Then, 

using table 1 and the notation of equation (1), 

PK(2.14(,) 
0.21675 

Example 2.   The use of table 2: 

Suppose one knows that he has a Rayle;gh distributed random variable X and wishes to find 
the probability that X ;_ 1.67«.   Then, using table 2 and the notation of equation (2), 

PR(1.67«)-0.75203 

Example 3.   The use of figures 1, 2, and 3: 

Suppose a record of a probability density function which strongly resembles figure 1 requires 
identification.   A Rayleigh density function is then suspect and could be verified if a good esti- 
mate of the Rayleigh parameter « was known.   Since the value of « is determined by the abscissa 
value at which the maximum value of the density function occurs, one can determine « immediately. 
The value of a is thus known and the probability density can be obtained from equation (1) and 
compared to the actual record.   If a quick estimate of the mean and standard deviation is desired, 
they can be obtained by equations (4) and (6) or by figures 3 and 4 as follows.   Suppose a = 8.5, 
then by figure 3 nK ■ 10.7 and by figure 4 «R = 5.6. 

Example 4: 

The set of scalar miss distances of the AGM Splash 83K in table 3 is considered.   It is de- 
sired to characterize the population from which this set came.   If it is assumed that the x and y 
coordinates of this set of miss distances are independent, then this set is Rayleigh distributed, 
and the population from which it came can be completely characterized.   The sample mean is com- 
puted in the usual manner. 

•4Er. 
where 

n      The sample size.   In this case n ■ 30. 

r      A data point, i.e., one of the given set of scalar miss distances. 

F     The sample mean. 

It is found that 

F = 24.9 

Now from equation (4) or figure 3, an approximation for the a for this population can be found. 

r 
1.2533 

19.9 
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Tabl• 3. Data for Exampl• .C 

Scalar Min Distanc•s 
for th• AGM Splash 83K 

Miuil• Min Distanc• 
(F .. t) 

1 5.57 
2 7.61 
3 8.43 
4 9.84 
5 10.40 
6 10.70 
7 13.00 
8 13.70 
9 15.60 

10 16.50 
11 18.50 
12 19.00 
13 19.00 
14 19.50 
15 19.70 
16 20.10 
17 22.50 
18 1.2. 70 
19 27.60 
20 29.80 
21 30.00 
22 31.00 
23 32.10 
24 32.20 
25 38.00 
26 40.30 
27 40.30 
28 45.30 
29 60.20 
30 68.70 

Hence, the pro ba bility de ns it y for the population can be estimate d as 

It is now a s imple ma tte r to obta in s ome pe rcentiles for the popula tion . From table 2 find for 
e xa mple : 

18 

Probability[R _ 1.18nl = Proba bility[R ~ 23.51 = 0.50 

Probability[R _ 1.67a l = Proba bility fR _ 33.21 = 0.75 

Proba bilit y[R ~ 2. 15n l = Proba bi l ity[F.. ::::, 42.8 1 = 0.90 



■ 

ProbabilitylR •_ 2.45a\ - Probability[R ^ 48.8! - 0.95 

Probability[R ^ 3.04al - Probability[R ■_ 60.51 - 0.99 

ProbabilitylR j 1.49« - 29.71 - 1.0 - 0.67 - 0.33 

Probabilityl5.0 - .25a < R ^ 1.75a - 34.81        - 0.78 - 0.03 = 0.75 

Example 5: 

Table 4 contains speeds in feet per second of the FIZZ 42A rocket at 3 seconds after launch. 
This data is assumed to be Rayleigh distributed.   The sample average is computed as 

20 

20 Z-»   > 
i=i 

where s   is a speed for each i = 1, 2 20 

Hence, 

x = 3,295 

Table 4.  Data for Example 5 

|    Speedof the FIZZ 42A Rocke 
3 Seconds After   Launch 

Rocket Speed 
(Feet Per Second)    | 

I           1 559               j 
2 673               1 
3 703 
4 1.737 
5 1.819 
6 1,895 
7 2,029               1 
8 2,309 
9 2.782 

10 3,191 
11 3,342               j 

1        12 3.712               ! 
13 4,021 
14 4,C65               i 
15 4,159 
16 4,397 
17 5.455 
18 5,764               j 
19 5.889 
20 7.393 

19 
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Then ■ van be ubtuined by referring to either figure 3 or equation (4).   It III found to be 

«    2.629 

Therefore, the probability density for the population from which our sample came can be estimated 

PK(s) - s ! s' exp 
(2,629r --^1 L    2(2.629)2J 

Also the percentiles can be easily obtained from table 2.   For example: 

ProbabilitylS ■_ 1.18« - 3,1021 = 0.50 

Probability(S v 2.15a - 5.6521 - 0.90 

Example 6: 

Table 5 contains data of random sums of two sets of 25 miss distances for the AGM Splash 
86.   The theory developed for the random sum of two Rayleigh distributed variables can be utilized 
in this instance. 

The sample mean is computed in the usual manner as 

T  = 8     25 

25 

15 A-» 
rs  =75.3 

where each r     is a data point from table 5.   Equation (9) is now used to approximate the sum, 
8i 

a. ♦ n,- 0f ^e original parameters of the populations of the sets of miss distances for the AGM 
Splash 86.   It will be assumed that these populations are identical, hence set n ^ «j =» «2 ^en 

2/2 

75.3 
2.5066 

.-30.0 

Now, by the use of equation (10). the standard deviation of the sum of two equal Rayleigh popula- 
tions can be approximated. 

a8- \Ia(0.65514) = 28.8 

Hence, by the use of figure 7. various percentiles for the population, which consists of random 
sums of two Rayleigh populations, can be approximated.   For example: 

Probability[Rs _ 2.65a = 76.3] - 0.50 

ProbabilityfR       4.05a - 117.U 0.90 

Example 7: 

Table 6 contains data which are random products of two sets of 25 miss distances for the 
AGM Splash 86.   For this case, the theory developed for the random product of two Rayleigh dis- 
tributed variables can be used. 
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Table .5. Data for 
Example 6 

Random Sums of 
Miss Distances for 
the AGM Splash 86 

Run Sum (Feet) 

1 13.5 
2 21.0 
3 42.5 
4 42.6 
5 49.8 
6 50.0 
7 50.5 
8 55.3 
9 55.6 

10 55.7 
11 64.0 
12 64.9 
13 71.5 
14 80.9 
15 81.5 
16 86.2 
17 87.3 
18 90.2 
19 91.7 
20 93.3 
21 102.8 
2~ 122.5 
23 128.4 
24 133.2 
25 148.1 

The sample mean is computed in the usual manner as 

25 

T ...!.. ~ r "' 1,611 
P 25£..J P1 

i ·1 

Table 6. Data for 
Example 7 

Random Products of 
Miss Distances for the 

AGM Splash 86 

Run Product (FHt2) 

1 9 
2 43 
3 409 
4 435 
5 447 
6 588 
7 630 
8 737 
9 760 

!0 762 
11 918 
12 1,022 
13 1,219 
14 1,529 
15 1,607 
16 1,660 
17 1,855 
18 2,025 
19 2,035 
20 2,172 
21 2,642 
22 3,307 
23 3,890 
24 4,288 
25 5,274 

where each r is a data point from table 6. As in example 6, it will be assumed that the two orig­
P i 

ina! populations were identical with parameter a "' a 1 "' a 2 . Using equation (12), 

is obtained. Hence , the es timated standard deviation of the new population (which consists of the 
random product of two variables, one from each of the two original Rayleigh populations) is 

a "' 1.2380(1,026) "' 1,270 p 
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Hence, various percentiles may be estimated using figure 9.   For example, 

ProbabilitylR        1.03«   - 1,308|    O.SO 

ProbabilitylR       2.64«      3,3531-0.90 
P - P 
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APPENDIX 

MATHEMATICAL DERIVATIONS 

PROPERTIES POR ONE RAYLEIGH DISTRIBUTED RANDOM VARIABLE 

The Rayleigh density function for a random variable X is defined as 

r 0 if x    0 

PR(x) (1) 

hA-i) if x>0 

where n is a convenient parameter.   It is emphasized that a is not the standard deviation or the 
mean of the Rayleigh density.   It is merely a convenient parameter with which to work.   This 
utility of a will be made evident in the following discussion. 

The Rayleigh distribution function is given by 

■ 0 if x -. 0 

•V*)    < (2) 

.  fx_L exp 1- —| dt     .f x>0 
J0   a2 \   2a2/ 

Performing the indicated integration 

0 ifx' 0 

PR(x)    - (3) 

1 - exp 
(•*) 

if x>0 

is obtained. 

A series of calculations for the mean, mean square, and the standard deviation of the 
Rayleigh density function in terms of a is now given.   The mean is given by 

''R     ^^     j    XPKM dx    JJ" 

The mean square is given by 

E(X2) -   /Vpud) dx     2a2 

(4) 
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The variance is given by 

(5) 

Thus we have the following relationship 

aR =aR (6) 

for the standard deviation of the Rayleigh distribution in terms of a . 

To find the value of x at which the peak or the mode of the Rayleigh density function occurs , 
the derivative is taken and set equal to zero. Then , the resulting equation is solved. 

Therefore, 

And, since x > 0, 

X = a (7) 

is the value of x at which the maximum occurs. 

The maximum value of pR(x) is given by 

from this result one can see immediately the utility of the "convenient" parameter a. 

THE SUM OF TWO RAYLEIGH DISTRIBUTED RANDOM VARIABLES 

Now that the case of one Rayleigh distributed random variable has been explained, the res ult 
of adding together two such independent variables can be considered. 

If X
1 

and X
2 

are independent Rayleigh distributed random variables with respective pa ram­
eters a

1 
and a

2
, the stochastic variable Y = X

1 
+ X

2 
is considered. It is desired to obtain the 

density function and associated properties of Y. 

The density functions of X1 and X2 are denoted by Px (x1) and Px (x2 ) respectively. Als o 
I 2 

the distribution functions of X1 and X2 are denoted by Px (x1) and Px (x2 ) respectivel y. Simi-
' 2 

larly Py(Y) and Py(Y) denote the density and distribution functiont= of Y. Also Px X (x
1

,x
2

) and 
,. 2 

Px X (x
1

,x2) denote the joint probabili y density and dist ribution functions of X
1 

and X2. Then , 
,. 2 
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Py(y) - Probability!Xj ♦ X2 £ yl = Px   x [KXJ.XJ^X,  . x2 < yl) 
1'     2 

// PX,^/«!'^)^!  dx2 

|(x1,x2):Xj + x2 < y| 

f:[i 
r-«, 

'Px,.x(xl-X2)dx2 Id«, 

The notation Probability!Xj ♦ X2 < yl is to be read "the probability that X, . X2 ;_ y." The 
notation l(Xj ,x2):x1 + x2 < y| is to be read "the set of all ordered pairs (Xj ,*2) such that x. i 
x2 < y." 

The transformation 

x, =x1 

- t- x. 

is now performed.   The Jacobian of this transformation is JCXj.t) = 1.   Also, x2 - 0 implies t - x. 
and x2 = y - Xj, implies t ■ y.   Hence,* 

Pv(y)  J[y[jryPx1,x/xit-xi)dtjdxi 

This last quantity is differentiated with respect to y using the formula of Leibniz.**   For sim- 
plicity, let 

Px ,x («i»1* xi) dt 

then 

PY(y)=   fyF(x1,y)dx1 
J0 

Hence, the derivative is 

«Vy)     _.     .  dy £ü.F(y.y)Ä.pW.y)«+rg(ll.y)d. 
dy dy dy     •'o   dy 

* Taylor, A. E., Advanced Calculus.   Ginn and Company, p. 430. 
**Sokolnikoff, I. S. and E. S. Sokolnikoff.   Higher Mathematics for Engineers and Physicists.   New York, 

McGraw-Hill. pp. 167-169. 
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^ 

Now .lote that 

F(y.y)     f Vpx  x (y.t - y) dt 
•'v 1"     2 

is zero because the integral over    ne point is zero.   Also — is zero and 
dy 

— (x .y)    px   x (x   y - x.) 
(jy     * ArA2    * l 

■ 

Hence the density function of Y 

pY(y)     f Px   x (xry " xi)dxi 

is obtained.   It is now noted that since X. and X-, are independent random variables, 

Thus, 

Xv 
Px ("pPx (V" V dxi 

Substituting the Rayleigh density function for px (x.) and px (y - x.) in the above, one obtains 
1 2 

Pv(y'> 
•        -, 2 (    l«Jy2 - 2xy«2   ,   x2(n2   , „2)1 j 

TT J0 
(xy -x) exp) rn -\dx 

"\"2 { 2a\a2 7 

The next task is to determine this function in closed form or in terms of known tabulated func- 
tions.   To facilitate the algebraic manipulation, several substitutions will be utilized.   If 

Y    y«f 

ß   "iV 
2        2 

III II.     I   «T 

'■' 

T   2 ,2 

then 

pY(y)     20e--   j[V(xy - x2)e-v( ..x2-2 > x) dx 

26 



If the exponential expression could be changed to the form e" * z  , it would be easier to manipu- 
late.   Hence, suppose 

z2     (ax . b)2    wx2 - 2) x »  8 

where h is some constant.   Since (ax * b)       ax    ♦ 2abx i b2, equating coefficients of x , x, and 
tha constant term with a, 2y, and ß respectively 

a     \ ft7 

are obtained.   Therefore, let 2     \ öj x then 

pY(y)     2^e-^e   '  ' f ^xy - x2) exp (-^z2) dx 
•'0 

Also, the constant term can now be consolidated into 

a0     26 exp H'-i)] 
The integration can now be accomplished over z, thus 

dz    \Ö7 dx 

and Xj     0 implies z     ——; x.      y implies z     ^ÖJy ——.   Also 

\~)Z  ♦   )■ 
X         

If the following simple expressions are introduced for the limits of the integral, 

V<" 
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then 

pY(y)     a,,/'0^'^;^-'"2    '2N';'Z>->   y.^jL 

/•'of zy    ry     z2    2z>'    r \ _ z2 . an I     I — ♦ —  I e  *      dz 

(i> Ci> (> 

Jo r'o (-^-4 {4-4 
2X2       I/ 

dj      \fii      fi> / 

2 z   dz 

Now to consolidate the constant terms, let 

a0/        2)\ 

a2   " 

rt-i) 
then the resulting integral is 

r(y)     a, J* "ze"-'2 dz . ^ C 0z2e'■ ^ dz . a,J "e-^ dz 

This last expression is now recognizable as one in which some of the integrated terms can be 
solved in a closed form and some of the terms can be solved in a lorm for which there exists 
excellent numerical approximations and tabulations.   Each of the preceding three integrals will 
now be considered separately since each one involves a different type of evaluation.   For con- 
venience, set 

' 

I,      a.Jpze-^dz 

I,     a,  f Ve"*2 dz 

I3     a,jroe-''dz 
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Evaluating I., 

a. 2 

1        2(.'/ k       20 \ J 

is obtained.   To evaluate I  , the error function defined by 

erf(rt)    -L f e"'2 dt     flj 0 
77    0 

and the definite integral 

-4fV,2cit 

are utilized.   Therefore, 

JV'   dt     L_|l-erf(rt)| 

and 

/ 2e-,2dt     ^-lerf^p-erf^,)! 

It is noted that erf(-rt)     - erf(«).   Now, to obtain L in terms of the error function, let C, ■ z\ßi 

then 

, ^r^e-'2d< -f Jo3* sfZi *T«/r 

-^ X-^|erf«oNu)-erf(kv^)l 

And, since 

kv^V 
yo. 

s/la^s/a.  t n 

and 

^0 = 

2 
y«2 

7",  * «2 
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it follows that 

a -
3 j ( - -13 = 2 -;j; erf(( 0vw ) + erf(-ky w)) 

Finally, to evaluate 

it is necessary to integrate by parts. Thereafter the procedure is similar to that employed in the 
eva! uation of 1

3
. Hence , if 

then 

u = z 

2 
dv = ze- z dz 

du = dz 

1 - z 2 
v = - -e 

21/1 

a J77 
t ~(erf((o#> + erf(-k\ w)) 

41/1 2 

Then, in final form , 

30 

8 2\ 'T1 
1- --

3
- erf(( 0, '0 > 1- erf(-kvfJ )) 

41/J 2 

(al + a2 k) e- ·.,k2 

21/1 

(at t a2(0) e- ~~ 
21/1 

1- 1a3 + ~)(.!. E)rerf(( 0v'0) + erf(-ky0 )) \ u, 2 ../ 0 



The reader can no* substitute back to obtain a form consisting of the original parameters and 
variables.   After t.iese substitutions, 

(af  . o])2  eXP\   lal)     CBJ • "j)2 ^V   2a2
2) 

a-o-Iy2 - («? . ah]       \        y2      "1 

(„2. „f2        L 2("'' "2)J 

This is a convenient form for the density function of the sum of two randomly distributed Rayleigh 
variables since there exist extensive tables of the error function.   There also exists extremely 
good numerical approximations.* 

It is now desired to obtain the mean and standard deviation of PyCy) in terms of n. and a,,. 
The means of X. , X^,, and Y are denoted by /JX   , ^x    and ;/y.   Hence 

/'Y      J    yPyÖOdy      f  J    (x\  ' X2^PX ^xl^Px ^x2^ dxldx2 
'0   "O 

jf   ^Px^^dx,   .  f   x2px(x,)d> 

/jO»!  • «2) 

Also, if the respective standard deviations of X., X2 and Y are denoted by ^x ' aX • and ^Y' t',en 

(y - /'Y)2PY(y) dy 

«2 ,2 
(JX    I (TX_ 

("P"2)(2-f) 

This completes the analysis of the sum of two independent Rayleigh distributed random vari- 
ables. 

* National IJurea'i of Standards Applied Mathematics Series SS, Handbook of M^itiematical Functions, 
chapter 7. 
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THE PRODUCT OF TWO RAYLEIGH DISTRIBUTED RANDOM VARIABLES 

It is also possible to consider the case of a product of two Rayleigh distributed variables 
and obtain some properties of the resulting random variable. 

If Xj and X2 are independent Rayleigh distributed random variables with respective param- 
eters «j, n,, then Y     X.X, ^ considered.   It is desired to find the probability density function 
of Y and the mean and standard deviation of Y in terms of the original parameters a., «2. 

To find the probabihtv density function of Y it is first noted that since X   and X2 are inde- 
pendent random variables, the joint probability density function X. and X,, is given by 

Px ,X (VX.P     pX ("i^Px (x2^ 

where px (Xj) and px (x^) are Rayleigh probability density functions.   Now. if 1-'^(y^ is the prob- 

ability distribution function of Y, then 

PY(y)     ProbabilityfX1X2 _ y|     Probability![(Xj .Xj)^, x2 < ytl 

hiO 

The transformation 

// fXvx}xl'*2>i%i dx2 
|(\, ,x2):x1x2 < yt 

_y 

lim j      dx.   J    'pjj    x(x1,x2)dxT 
hio •'h •'o I'   a 

X.        X 

•        v 

is now performed.   The Jacobian of this transformation is J(x,t)     -.   Also, x2     0 implies — = 0, 
y t    y which implies t    0, and \~,     — implies-     - which implies y     t.   Hence,* 

PY(y)    lim   f    dx   fVpx   x   (x. Mil 

Now differentiating with respect to y, the density function of the random   ariable Y is obtained as 

Py<y)-»»/,BPxrx2(»'|)T 
hiO    h 

lim 
hio 

f ' _2_   ex   r   (x4n2 ' "ly2)1 
Ju 2   2 I T  2   2   2 h     xn'nt, | 2x a^      j 

dx 

Ihis result is integrated numerically. 

♦See National Uureau of Standards Applied Mathematics Series 5S. Handbook of Mathematical Functions, 
chapter 7. 
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Now, since the variables X1 and X2 are independent, the mean and standard deviation of Y 
are easily obtained. The mean is given by 

The mean square is given by 

Thus, 

4a2 2 
= la2 

The pertinent features of the product of two independent Rayleigh distributed random variables 
arc now established. 
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